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The quantum mechanical three-body problem with Coulomb interaction is for-
mulated within the adiabatic representation method using the hyperspherical coordi-
nates. The Kantorovich method of reducing the multidimensional problem to the one-
dimensional one is used. A new method for computing variable coefficients (potential
matrix elements of radial coupling) of a resulting system of ordinary second-order
differential equations is proposed. It allows the calculation of the coefficients with
the same precision as the adiabatic functions obtained as solutions of an auxiliary
parametric eigenvalue problem. In the method proposed, a new boundary paramet-
ric problem with respect to unknown derivatives of eigensolutions in the adiabatic
variable (hyperradius) is formulated. An efficient, fast, and stable algorithm for solv-
ing the boundary problem with the same accuracy for the adiabatic eigenfunctions
and their derivatives is proposed. The method developed is tested on a parametric
eigenvalue problem for a hydrogen atom on a three-dimensional sphere that has an
analytical solution. The accuracy, efficiency, and robustness of the algorithm are
studied in detail. The method is also applied to the computation of the ground-state
energy of the helium atom and negative hydrogen ion.c© 2000 Academic Press
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1. INTRODUCTION

During the last few decades, excitation and ionization processes in a system of three
charged particles have been actively studied in atomic and molecular physics [1, 2].
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Currently, ongoing work is being carried out at the CERN in the experiments ASACUSA
and ATHENA studying properties of exotic antiprotonic Coulomb systems in traps at low
temperatures using new abilities of modern lasers [3, 4]. These experiments require various
data on characteristics of the Coulomb systems, such as the helium atom He and the an-
tiprotonic helium atomp̄He+, and also on collision processes, leading to the formation of
antiprotonicp̄He2+ and antihydrogen̄H atoms. Detailed calculations of energy levels and
widths of metastable states, radiative and Auger transition rates, collision cross sections,
etc., are necessary for the planning and interpretation of the above experiments. Hence, the
development of appropriate numerical methods for computing the desired spectroscopic
and collision data with sufficient accuracy is an important step in better understanding ele-
mentary processes taking place in exotic as well as in regular atomic and molecular systems
of charged particles.

One of the most popular and widely used approaches to solving the quantum mechan-
ical three-body problem with Coulomb interaction is the adiabatic representation method
[1, 2, 5]. In the framework of the hyperspherical coordinates formulation of this method
[2, 6, 7], the hyperradiusR is treated as a slowly varying adiabatic variable, analogous
to the internuclear distance in the Born–Oppenheimer approximation for molecules [1].
From a mathematical point of view, this approach is well known as the Kantorovich method
for the reduction of a multidimensional boundary problem to the one-dimensional one by
using a set of solutions of an auxiliary parametric eigenvalue problem [8]. These solutions
are obtained for a given set of values of the adiabatic variable, which plays the role of an
external parameter here. The convergence of the adiabatic expansion in the hyperspherical
coordinates is faster [9] than the convergence in most conventional approaches based on the
independent electron model. This is due to the fact that collective variables such as hyper-
radiusR =

√
r 2

1 + r 2
2 and hyperangleα = tan−1(r2/r1) allow more natural and accurate

accounting for electron correlations in an atomic system (see, e.g., [6]) than the independent
electron coordinates,r1 andr2.

This method has been successfully applied in calculating energy levels and wave functions
of two-electron atoms within the adiabatic hyperspherical approach (see, e.g., [6, 9]), as
well as in computing energy spectra of the negative positronium ion Ps− [7, 10] and various
muonic molecules [7, 11] (see also [5, 12]). An essential part of the implementation of the
Kantorovich method is the computation of variable coefficients (potential matrix elements)
for the final system of ordinary second-order differential equations. These coefficients are
the integrals over eigenfunctions and their derivatives with respect to the adiabatic variable.
In real applications, efficient and stable computation of derivatives of the adiabatic eigen-
functions and the corresponding integrals with accuracy comparable with that achieved for
adiabatic eigenfunctions presents a serious challenge for most of the numerical approaches
involved in various types of calculations within the adiabatic representation method.

In the present paper we propose a new numerical method for computing these derivatives
with the same accuracy as obtained for the eigenvalues and eigenfunctions of the para-
metric eigenvalue problem. This circumstance guarantees the calculation of the variable
coefficients (potential matrix elements of radial coupling) of a system of ordinary differ-
ential equations with the same precision as adiabatic eigenfunctions. This goal is achieved
by formulating a new boundary parametric problem with respect to unknown derivatives
of eigenvalues and eigenfunctions in the adiabatic variable. An efficient, fast, and stable
algorithm for solving this boundary problem with the same precision for the adiabatic
eigenfunctions and their derivatives is elaborated.
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The accuracy and stability of the method developed are studied on a test parametric
problem describing a hydrogen atom on a three-dimensional sphere. This problem has an
analytical solution that allows direct comparison of approximate eigensolutions with the
exact ones. To show the efficiency and reliability of our implementation of the Kantorovich
method, we apply it to the calculation of the ground state energy of the helium atom and
negative hydrogen ion. This is a popular problem for three-body Coulomb systems which
usually serves as a benchmark for new numerical algorithm and methods. For simplicity,
in this paper we consider a system with total angular momentumJ = 0. This allows us to
demonstrate all essential numerical peculiarities of our method when it is applied to a rather
complex atomic system without unnecessary complications connected with accounting
for additional angular variables forJ > 0. The generalization of the present approach to
three-body systems with arbitrary total angular momentum is straightforward and will be
considered elsewhere.

Potential matrix elements of radial coupling obtained within the present approach can
be used in scattering calculations using some appropriate propagation scheme (see, e.g.,
[13]). In scattering calculations, in order to eliminate derivatives of the adiabatic surface
eigenfunctions in hyperradius, the sector diabatic approach [14] is widely used. The price for
using this approximation is a slower convergence of the diabatic basis and, therefore, there
are a larger number of hyperradial equations to be solved to obtain the required accuracy
of the S-matrix elements. Matrix elements computed by the present method can be directly
incorporated in the popular hyperspherical close-coupling scheme [15]. Applications of the
method to scattering problems will be considered elsewhere.

The paper is organized as follows. The Schr¨odinger equation for a three-dimensional
eigenvalue problem for a system of three charged particles is considered in Section 2. The
Kantorovich method is briefly described in Section 3. Three steps of implementation of the
Kantorovich method are considered in Sections 4–6. In Section 7 our method is applied to
three eigenvalue problems. A numerical solution of a parametric eigenvalue problem for a
hydrogen atom on a three-dimensional sphere is presented in subsection 7.1. The results
of our calculations of the ground-state energy of the helium atom and negative hydrogen
ion are presented in Section 7.2, where they are compared to the results of other theretical
calculations. The conclusions and possible future developments of the method are discussed
in Section 8.

2. THE SCHRÖDINGER EQUATION

A time-independent Schr¨odinger equation for a system of three charged particles with
total angular momentumJ= 0 in the conventional hyperspherical coordinates{R, α, θ}
[16] can be written as an eigenvalue problem for the following 3-D elliptic equation,

T̂9(R, α, θ)+ 1

R Ŵ(α, θ)9(R, α, θ) = E9(R, α, θ), (1)

whereE is the energy and9(R, α, θ) is the total wave function of the system. The differential
operatorT̂ and the Coulomb potentialV are defined in Eq. (1) as follows(e= h- = me = 1):

T̂ = − 1

R2τ

∂

∂R
1

2
R2τ

∂

∂R + t̂,

t̂ = −1

τ

(
∂

∂α

1

4
R sin2 α sinθ

∂

∂α
+ ∂

∂θ

1

4
R sinθ

∂

∂θ

)
,
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Ŵ = Za Zc

sinα/2
+ ZbZc

cosα/2
+ Za Zb[1− sinα cosθ ]−1/2,

τ = 1

8
R3 sin2 α sinθ.

In the above,Za = Zb = −1 andZc = Z are the charges of particlesa, b, andc with mas-
sesMa = 1,Mb = 1, and Mc = ∞, respectively. Note thatZ = 1 for the H− negative
hydrogen ion andZ = 2 for the He atom. HyperradiusR ∈ [0,∞) and hyperspherical
angles(α, θ) ∈ Ä = {0≤ α ≤ π, 0≤ θ ≤ π}; i.e., the total set of variables(R, α, θ) ∈
Ä1 = Ä× [0,∞).

Total wave function9(R, α, θ) satisfies the boundary conditions

lim
α→0,π

sin2 α
∂9

∂α
= 0, lim

θ→0,π
sinθ

∂9

∂θ
= 0, (2)

lim
R→0
R5∂9

∂R = 0, lim
R→∞

R59 = 0 (3)

and is normalized by the condition∫ ∫ ∫
R2τ92 dα dθ dR = 1.

3. KANTOROVICH METHOD

Consider a formal expansion of the solution of Eqs. (1)–(3) over an infinite set of two-
dimensional basis functions{8i (α, θ;R)}∞i=1:

9(R, α, θ) =
∞∑

i=1

χi (R)8i (α, θ;R). (4)

In Eq. (4) the functionsχ(R)T = (χ1(R), χ2(R), . . .) are unknown, and the adiabatic func-
tions8(α, θ;R)T = (81(α, θ;R),82(α, θ;R), . . .) form an orthonormal basis for each
value of the hyperradiusR, which is treated here as a slowly varying adiabatic parameter.

In the Kantorovich approach [8], functions8i (α, θ;R) are determined as solutions of
the two-dimensional eigenvalue problem(

t̂ + 1

R Ŵ

)
8(α, θ;R) = Ê(R)8(α, θ;R), (5)

with boundary conditions derived from Eq. (2):

lim
α→0,π

sin2 α
∂8

∂α
= 0, lim

θ→0,π
sinθ

∂8

∂θ
= 0.

Since the operator in the left side of Eq. (5) is self-adjoint, its eigenfunctions are orthonormal:∫ ∫
τ8i8 j dα dθ = δi j .
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In the equation above,δi j is Kroneker’sδ-symbol. Problem (5) is solved for each value of
Rk ∈ ωR, whereωR = (R1,R2, . . . ,Rk, . . .) is a given set of values of hyperradiusR.

After substitution of expansion (4) in the Rayleigh–Ritz variational functional (see [7])

R(9) =
∫
Ä1

R2

{
1

2
τ

(
∂9

∂R

)2

+ R
4

sinθ

[
sin2 α

(
∂9

∂α

)2

+
(
∂9

∂θ

)2]
+ τ

R9
T Ŵ9

}
dθ dα dR×

{∫
Ä1

R292τ dθ dα dR
}−1

and subsequent minimization of the functional, the solution of Eqs. (1)–(3) is reduced to
a solution of an eigenvalue problem for an infinite set of ordinary second-order differen-
tial equations for determining energyE and coefficients (radial wave functions)χ(R)T =
(χ1(R), χ2(R), . . .) of expansion (4):

−I
1

R2

d

dRR
2 d

dRχ + V(R)χ +Q(R) dχ

dR +
1

R2

dR2Q(R)χ
dR = 2E Iχ, (6)

lim
R→0
R2 ∂χ

∂R = 0, lim
R→∞

R2χ = 0. (7)

HereI , V(R), andQ(R) are infinite matrices, elements of which are given by relations

Ii j = δi j , Ui (R) = 2Ei (R) = 2

(
Êi (R)+ 2

R2

)
,

Vi j (R) = Ui (R)δi j − 1

4R2
δi j + Hi j (R),

(8)

Hi j (R) = Hji (R) =
∫ ∫

τ
∂8i

∂R
∂8 j

∂R dα dθ − 9

4R2
δi j ,

Qi j (R) = −Qji (R) =
∫ ∫

τ8i
∂8 j

∂R dα dθ − 3

2Rδi j , i, j = 1, 2, . . . .

Thus, the solution of Sturm–Liouville problem (1)–(3) is reduced to solution of the following
three problems:

1. Calculation of potential curvesEi (R) and eigenfunctions8i (α, θ;R) of the two-
dimensional problem (2)–(5) for a given set ofR ∈ ωR.

2. Computation of matrix elements of radial coupling (8) necessary for Eq. (6).
3. Calculation of energiesE and radial wave functionsχ(R) as eigensolutions of one-

dimensional eigenvalue problem (6)–(7).

4. SOLUTION OF EIGENVALUE PROBLEM (5)

The two-dimensional parametric eigenvalue problem (2)–(5) can be solved directly [7]
using the finite element method [17, 18]. In this paper, we propose a more efficient method
of solving this problem. Because of the symmetry of equation coefficients with respect to
α = π/2, problem (5) will be considered forα ∈ [0, π/2].
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Consider the expansion of the adiabatic surface function8i (α, θ;R)

8i (α, θ;R) =
∞∑

l=0

ϕ
(i )
l (α;R)Pl (cosθ), (9)

whereϕ(i )l (α;R) are expansion coefficients depending parametrically onR andPl (cosθ)
are the Legendre polynomials. These polynomials are the eigensolutions of the eigenvalue
problem

− d

dθ
sinθ

d Pl (cosθ)

dθ
= λ sinθPl (cosθ)

with λl = l (l + 1) being the corresponding eigenvalues. The Rayleigh–Ritz variational
functional for problem (5) can be written as

R(8) =
∫ π/2

0

∫ π

0

[R
4

sin2 α sinθ

(
∂8

∂α

)2

+ R
4

sinθ

(
∂8

∂θ

)2

+ R
2

8
sin2 α sinθŴ82

]
dθ dα ×

[ ∫ π/2

0

∫ π

0

R3

8
sin2 α sinθ82 dθ α

]−1

. (10)

Expansion (9) is substituted next into functional (10). After minimization of the varia-
tional functional, we see that eigenfunctionsϕ(i )l (α;R) and eigenvaluesEi (R) satisfy the
following eigenvalue problem for an infinite set of ordinary differential equations:

L(ϕ, E)≡
[
R
(
− d

dα
D

d

dα
+Λ

)
+R2W− Ei (R)

1

2
R3D

]
ϕ= 0, lim

α→0,π/2
sin2 α

∂ϕ

∂α
= 0.

(11)

In the above,D, Λ, andW are infinite matrices, elements of which are defined by

Dii = 1

4
sin2 α, Di j = 0, i 6= j, 3i i = 1

4
(i (i + 1)+ sin2 α), 3i j = 0, i 6= j,

Wi j = −Z
1

4
sinα

(
cos

α

2
+ sin

α

2

)
δi j + 1

8
sin2 αWrep

i j ,

Wrep
i j =

∫ 1

−1

Pi (t)Pj (t)√
1− t sinα

dt, i, j = 0, 1, 2, . . . .

Thus, the solution of the two-dimensional eigenvalue problem (2)–(5) is reduced to the
solution of eigenvalue problem (11) for a system of the ordinary second-order differen-
tial equations. Note that in Eq. (11) instead of eigenvaluesÊi (R) we have used shifted
eigenvaluesEi (R) = Êi (R)+ 2/R2 which are obtained as solutions of Eq. (5) by adding
the extra term 2/R2 to the adiabatic Hamiltonian.Ei (R) were introduced earlier in defini-
tion (8) and correspond to eigenvalues of the conventional parametric eigenvalue problem
[24].
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5. SOLUTION OF EIGENVALUE PROBLEMS (6) AND (11)

For a numerical solution of one-dimensional eigenvalue problems (6) and (11) subject
to the corresponding boundary conditions, the high-order approximations of the finite-
element method [17, 18] elaborated in our previous papers [19, 20] have been used. One-
dimensional finite elements of orderp = 1, 2, . . . ,10 have been implemented. Using the
standard finite-element procedures [18], problems (6) and (11) are approximated by the
generalized algebraic eigenvalue problem

AFh = EhBFh, (12)

whereA is the stiffness matrix,B is the mass matrix,Eh is the corresponding eigenvalue,
andFh is the vector approximating solutions of (6) or (11) on the finite-element grid. For
problem (6),A = K̃1+ K̃2+ K̃3 andB = M̃ , where matrices̃K1, K̃2, andK̃3 correspond
to the first, the second, and the third and fourth terms on the left-hand side of Eq. (6),
respectively, and matrix̃M corresponds to the term on the right-hand side of Eq. (6). For
problem (11),A = RK1+R2K2 and B = R3M , where matricesK1, K2, and M cor-
respond to the first, the second, and the third terms in Eq. (11), respectively. TheA andB
matrices are symmetric and have a banded structure, and theB matrix is also positive definite.
The algebraic eigenvalue problem (12) is solved using the subspace iteration method [18].

Let En, ϕn be the exact solution of (11) and letEh
n ,F

h
n be the numerical solution of (12).

Then the following estimates are valid [17],∣∣En − Eh
n

∣∣ ≤ c1(En)h
2p,

∥∥ϕn − Fh
n

∥∥
0 ≤ c2(En)h

p+1, c1 > 0, c2 > 0, (13)

whereh is the grid step,p is the order of finite elements,n is the number of the corresponding
eigensolution, and constantsc1 andc2 do not depend on steph. The same estimates are
valid for the approximate solutions of problem (6).

6. CALCULATIONS OF MATRIX ELEMENTS OF RADIAL COUPLING

Calculation of the potential matricesV(R) andQ(R) (see Eq. (8)) with sufficiently high
accuracy is a very important step in solving a system of radial equations (6); otherwise,
it is practically impossible to get the desired energies and wave functions of three-body
Coulomb systems with the required precision. This implies that derivativesdϕ

dR should be
computed with the highest possible accuracy, which presents a difficult problem for most
of the numerical methods usually used in the adiabatic representation calculations. In most
applications the formulas

Qi j (R) = [R(Ei (R)− Ej (R))]−1
∫ π/2

0
ϕT

i R2Wϕ j dα (14)

and

Hi j (R) = −
∑

l

Qil (R)Ql j (R), Qii (R) = 0 (15)

are used. Note that Eq. (15) has rather slow convergence, which means that to obtain a high
level of accuracy one should include a sufficiently large number of terms in a sum overl .
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This circumstance can present a serious problem from the computational point of view,
especially with regard to demands for required computational resources and computation
time.

The main goal of this paper is to develop an effective numerical method that will allow
one to calculate derivativedϕdR with the same accuracy as achieved for eigenfunctions of
(11) and to use it to compute matrix elements defined by formulas (8). Taking a derivative
of (11) with respect toR, we see thatdϕdR can be obtained as a solution of the following
boundary problem:

L

(
dϕ

dR , E

)
=
[

d

dα
D

d

dα
−Λ− 2RW + 3

2
E(R)R2D+ 1

2
E′(R)R3D

]
ϕ ≡ G. (16)

The boundary conditions for functiondϕdR are the same as for functionϕ. Taking into account
that E(R) is an eigenvalue of operatorL, problem (16) will have a solutionif and only if
the right-hand side term G is orthogonal to the eigenfunctionϕ. From this condition we
find that

E′(R) =
∫ π/2

0

[
dϕ

dα

T

D
dϕ

dα
+ ϕT (Λ+ 2RW)ϕ

]
dα − 3

RE(R). (17)

Now the problem (16) has a solution, but it is not unique. From the normalization condition∫ π/2

0
ϕT 1

2
R3Dϕ dα = 1

we obtain the required additional condition∫ π/2

0
ϕT 1

2
R3D

dϕ

dR dα = − 3

2R . (18)

Thus, problem (16) with additional conditions (17)–(18) has now a unique solution. It is
necessary to mention that the second estimate of Eq. (13) is valid also for solutiondϕ

dR of
problem (16)–(18). This fact guarantees the same accuracy for adiabatic functions and their
derivatives within the present method.

Let us consider a numerical algorithm for the computation of the derivativedϕ
dR . It follows

from Eq. (12) that we should solve the linear system of algebraic equations

Ku ≡ (A − EhB)u = b, u = dFh

dR , (19)

where

A = RK1+R2K2, B = R3M ,

b = [−K1− 2RK2+ (3Eh +R(Eh)′)R2M ]Fh,

(Eh)′ = (Fh)T [K1+ 2RK2]Fh − 3

REh.

In these expressionsK1, K2, andM are the finite-element matrixes which correspond to
the first, second, and third terms in Eq. (11) withR = 1. SinceEh is an eigenvalue of (12),
matrix K in Eq. (19) is degenerate. The algorithm for solving Eq. (19) can be written in
three steps as follows:
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Step 1. The additional condition (18) has the form

uTBFh = − 3

2R .

Denote byk a number determined by the condition

|BFh|k = max
1≤i≤N

|BFh|i , Ck = (BFh)k,

whereN is the order of matrices above.

Step 2. Solve two systems of algebraic equations

K̄ v̄ = b̄, K̄ w̄ = c,

where

cT = (K1k, K2k, . . . , KNk), ck = 0, b̄i = bi , b̄k = 0,

K̄ i j = K i j , i 6= k, j 6= k, K̄ ik = 0, i 6= k, K̄ k j = 0, j 6= k, K̄ kk = 1.

In this way we have ¯vk = 0 andw̄k = 0.

Step 3. Find constantsγ , γ1, andγ2 as

γ1 = v̄TBFh, γ2 = w̄TBFh, γ = − 3+ 2Rγ1

2R(Ck − γ2)
.

After this, the derivativeu = dFh

dR is obtained using the formula

ui = v̄i − γ w̄i , i 6= k, uk = γ.

From the considerations above, it is evident that the derivative computed has the same
accuracy as the calculated eigenfunction.

7. NUMERICAL RESULTS

In this section we apply our approach to three problems which allow us to demonstrate
the high accuracy, efficiency, and stability of the algorithm developed. The first test prob-
lem solves the eigenvalue problem for a hydrogen atom on a three-dimensional sphere.
This problem has an analytical solution, which allows direct comparison of approximate
eigensolutions obtained by our method to the exact solutions. The other two problems are
devoted to the computation of the ground-state energy of the helium atom and the negative
hydrogen ion, respectively. Such eigenvalue problem is usually used as a benchmark for
testing the accuracy of numerical methods for solving three-body Coulomb problems since
high precision variational calculations are available for comparison.



EIGENVALUE PROBLEM FOR THREE COULOMB PARTICLES 337

7.1. Hydrogen Atom on a Three-Dimensional Sphere

Consider the following eigenvalue problem:(
− 1

2 sin2 α

d

dα
sin2 α

d

dα
− 1

R cotα

)
ψ(α;R) = E(R)ψ(α;R),

(20)

lim
α→0

sin2 α
∂ψ

∂α
= 0, lim

α→π sin2 α
∂ψ

∂α
= 0.

To preserve the form of the operators used in previous sections, we rewrite Eq. (20) as(
−R d

dα
sin2 α

d

dα
−R2 sin 2α

)
ψ(α;R) = E(R)2R3 sin2 αψ(α;R).

Problem (20) has an analytical solution,

En(R) = −1

2

[
1

n2
− n2− 1

R2

]
, n = 1, 2, . . . ,

with eigenfunctionsψn(α;R) which are the radial functions of a hydrogen atom on a
three-dimensional sphere [21, 22],

ψn(α,R) = Cn(R)Re{exp[−ıα(n− 1− ıσ)]2F1(−n+ 1, 1+ ıσ, 2, 1− exp(2ıα))},

Cn(R) = 2√
1− exp(−2πσ)

√
σ

n2+ σ 2

R3
, σ = R

n
,

where2F1 is a full hypergeometric function.
Denote the exact solutions of problem (20) by(En, ψn) and the numerical ones by

(Eh
n , ψ

h
n ). First, we present the results of the computation of eigenvalues and their deriva-

tives, which were obtained using 100 finite elements of the fifth order (501 nodes). Twenty
eigenvalues were calculated simultaneously at two values of hyperradius,R = 1 and 15 a.u.
Some of them are presented in Tables I and II together with the quantitiesε = Eh

n − En and
δ = (Eh

n)
′ − E′n, which show the actual accuracy achieved for the approximate eigenvalues

and their derivatives. From the tables, one can see the excellent agreement (10−10 or better)
of our numerical results with the exact solutions.

In order to compare the accuracy of radial matrix elements computed from the analytical
and numerical solutions, we denote matricesQ and H calculated using exact solutions
(En, ψn) with the help of expressions (8) and (14)–(15) byQ1, H1 andQ2, H2, respectively,
and the ones calculated from (Eh

n , ψ
h
n ) by Q1h, H1h andQ2h, H2h, respectively. To simplify

the comparison between the analytical and numerical solutions we introduce the following
quantities:

q1 = max
1≤i, j≤20

∣∣Q1
i j − Q1h

i j

∣∣, q2 = max
1≤i, j≤20

∣∣Q2
i j − Q2h

i j

∣∣, q3 = max
1≤i, j≤20

∣∣Q1h
i j − Q2h

i j

∣∣,
h1 = max

1≤i, j≤20

∣∣H1
i j − H1h

i j

∣∣, h2 = max
1≤i, j≤20

∣∣H2
i j − H2h

i j

∣∣, h3 = max
1≤i, j≤20

∣∣H1h
i j − H2h

i j

∣∣.
In Table III we compare the results of our computations with the analytical solutions obtained
forR = 1 and 15 a.u. One can see that radial matrix elements calculated within the present
approach agree very well (10−8 or better) with the exact ones for the given values ofR.
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TABLE I

Approximate Eigenvalues Eh
n for a Hydrogen Atom on a Three Dimen-

sional Sphere and Their Derivatives (Eh
n)′ Calculated atR = 1 a.u.,ε = Eh

n − En,

and δ = (Eh
n)′ − E′n, Where En and E′n Are Exact Solutions

n Eh
n ε (Eh

n )
′ δ

1 −0.4999999999(+00) 0.266(−11) −0.5748734821(−11) 0.575(−11)
2 0.1375000000(+01) 0.253(−11) −0.3000000000(+01) −0.264(−11)
3 0.3944444444(+01) 0.986(−12) −0.8000000000(+01) −0.101(−11)
4 0.7468750000(+01) 0.476(−12) −0.1500000000(+02) −0.490(−12)
5 0.1198000000(+02) 0.125(−12) −0.2400000000(+02) −0.111(−12)
6 0.1748611111(+02) 0.137(−12) −0.3500000000(+02) −0.154(−12)
8 0.3149218750(+02) 0.122(−13) −0.6300000000(+02) −0.246(−13)

10 0.4949499999(+02) 0.301(−13) −0.9900000000(+02) −0.144(−14)
12 0.7149652777(+02) 0.793(−13) −0.1429999999(+03) −0.761(−13)
14 0.9749744897(+02) 0.114(−12) −0.1949999999(+03) −0.108(−12)
16 0.1274980468(+03) 0.105(−12) −0.2549999999(+03) −0.100(−12)
18 0.1614984567(+03) 0.310(−13) −0.3229999999(+03) −0.191(−12)
20 0.1994987500(+03) 0.464(−12) −0.3990000000(+03) −0.107(−09)

Note.The numbers in parentheses denote a powers of 10.

TABLE II

The Same as in Table I forR = 15 a.u.

n Eh
n ε (Eh

n )
′ δ

1 −0.4999999999(+00) 0.857(−11) 0.6063205493(−12) 0.606(−12)
2 −0.1183333333(+00) 0.353(−11) −0.8888888888(−03) −0.600(−10)
3 −0.3777777777(−01) 0.377(−11) −0.2370370370(−02) −0.689(−11)
4 0.2083333333(−02) 0.431(−10) −0.4444444444(−02) −0.179(−11)
5 0.3333333333(−01) 0.261(−11) −0.7111111111(−02) −0.113(−12)
6 0.6388888888(−01) 0.144(−11) −0.1037037037(−01) −0.555(−12)
8 0.1321875000(+00) 0.761(−12) −0.1866666666(−01) −0.305(−13)

10 0.2150000000(+00) 0.496(−12) −0.2933333333(−01) −0.459(−12)
12 0.3143055555(+00) 0.352(−12) −0.4237037037(−01) −0.938(−13)
14 0.4307823129(+00) 0.252(−12) −0.5777777777(−01) −0.294(−12)
16 0.5647135416(+00) 0.247(−12) −0.7555555555(−01) −0.125(−12)
18 0.7162345679(+00) 0.363(−12) −0.9570370370(−01) −0.173(−12)
20 0.8854166666(+00) 0.823(−12) −0.1182222222(+00) −0.782(−10)

TABLE III

Comparison between Analytical and Numerical Matrix Elements Calculated

Using Exact Solutions (En,ψn) and the Approximate Ones, (Eh
n,ψh

n)

R q1 q2 q3 h1 h2

R = 1 0.308(−08) 0.593(−11) 0.732(−11) 0.381(−08) 0.461(−08)
R = 15 0.663(−08) 0.178(−14) 0.696(−13) 0.787(−08) 0.817(−08)

Note.Quantitiesq1, q2, q3, h1, andh2 are defined in the text. The numerical scheme para-
meters are the same as those in Table I.
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TABLE IV

Convergence of thehm
3 as a Function of the Number of Adiabatic

Eigensolutionsm (m = 5, 10, 15, 20)

R h5
3 h10

3 h15
3 h20

3

R = 1 0.473(−06) 0.342(−05) 0.133(−04) 0.162(−02)
R = 15 0.195(−04) 0.195(−04) 0.195(−04) 0.127(−02)

Note. hm
3 is defined in the text.

Note that our numerical results are also in excellent agreement with theoretical estimates
(13).

Consider next the convergence of formula (15) with respect to the size of the adiabatic
basis set (number of parametric eigenvaluesEi (R)). To do that we have calculated the
following constructs:

H2h,m
i j = −

m∑
l

Qil Ql j , 1≤ i, j ≤ m, m= 1, 2, . . . ,20.

The results for thehm
3 calculated from theH1h

i j andH2h,m
i j for some values ofm are shown

in Table IV. From the table, we can see that the matrix elementsH2h,m
i j calculated using

formula (15) show poor convergence inm and therefore lower accuracy and computational
efficiency in comparison with the ones obtained from Eqs. (8). This result is important in
the context of the next section since to obtain the desired level of accuracy of solutions
for a three-body problem within the adiabatic representation we need to calculate potential
matricesQ(R) andU(R) with the same accuracy as surface functions8i (α, θ;R). The
fulfillment of this requirement is guaranteed in the proposed approach.

7.2. Helium Atom and Negative Hydrogen Ion

In this section we present numerical results of solving problem (1)–(3) for the ground
state of the helium atom and for the negative hydrogen ion. First, let us examine the accuracy
of the potential curvesEi (R) and potential matrix elementsQi j (R) andHi j (R) within the
present method for the helium atom. These calculations can be compared directly with
the results of calculations for the helium atom performed in Refs. [23, 24] using another
implementation of the adiabatic hyperspherical approach. In [23, 24], a different numerical
method for constructing the adiabatic functions8i (α, θ;R) has been used. Matrix elements
Qi j (R) were calculated in [23, 24] as

Qi j (R) = [R2(Ei (R)− Ej (R))]−1〈8i (α, θ;R)|Ŵ(α, θ)|8 j (α, θ;R)〉 (21)

andHi j (R) were obtained from Eq. (15). To compare our results with the ones reported in
[24], we have calculated potential curvesEi (R), i = 1, . . . ,6, and potential matrix elements
Qi j (R) andHi j (R), i, j = 1, . . . ,6, at a fixed value of hyperradiusR = 7.65 a.u. To solve
Eq. (11), consisting of seven equations, (lmax= 6), 68 finite elements of the seventh order
(477 nodes) have been used. Our results for theEi (R = 7.65) andQ1h

i j (R = 7.65) agree
very well with theQ2h

i j (R = 7.65) obtained from Eq. (21) in [24] with the same number and



340 ABRASHKEVICH, KASCHIEV, AND VINITSKY

TABLE V

Eigenvalues (Adiabatic Potential Curves)Ei(R) and Their Derivatives

dEi(R)/dR, i = 1, . . . , 6, Computed atR = 7.65 a.u.

i Eh
i Ẽh

i Ēh
i (Eh

i )
′

1 −2.13590169 −2.1358893 −2.1358894 0.18574453(−01)
2 −0.698907137 −0.69893960 −0.69893964 0.46093945(−01)
3 −0.617951769 −0.61794757 −0.61794766 0.19973460(−01)
4 −0.422639095 −0.42279391 −0.42279421 −0.22691387(−01)
5 −0.371634497 −0.37170963 −0.37171011 −0.16109094(−01)
6 −0.269808873 −0.26968352 −0.26968483 −0.21915412(−01)

Note. Eh
i , (Eh

i )
′, Ẽh

i , andĒh
i are explained in the text.

order of finite elements (477 grid points),lmax= 6, andkmax= 8 (kmax here is the number of
eigenvalues of the auxiliary one-dimensional adiabatic Hamiltonian [24]). However, some
of our matrix elementsH1h

i j (R = 7.65) differ significantly (up to a factor of 1.7) from the
H2h

i j (R = 7.65) elements obtained in [24]. Analysis of these results (presented below in
Table VII) has showed that to obtain better agreement between the two methods for the
Hi j (R), it is necessary to increase the value ofkmax from 8 to 15 and also to increase the
number of terms in sum (15) from 6 to at least 80. Only this significantly extended basis set
enables matrix elementsH2h

i j (R = 7.65) calculated by the method of Ref. [24] to approach
those obtained by using Eq. (8).

In Table V we present the results of our calculations of potential curvesEh
i and their

derivatives (Eh
i )
′, i = 1, . . . ,6, calculated with relative error tolerance of 10−10 a.u. at

R = 7.65 a.u. Seven differential equations (11) (lmax= 6) have been solved using 68 finite
elements of the seventh order (477 nodes). For comparison, the results of the computations
of theẼh

i andĒh
i for two different sets of numerical parameters carried out by the method of

Ref. [24] are given in the third and fourth columns, respectively. TheẼh
i have been computed

in [24] using 68 finite elements of the seventh order withlmax= 6 andkmax= 8. The
Ēh

i , i = 1, . . . ,80, have been obtained using the same number and order of finite elements
with lmax= 6 andkmax= 15 (only the first six eigenvalues are displayed). One can see that
there is very good agreement between the calculations presented in the table. However,
it is important to mention that eigenvaluesEh

i are solutions of Eq. (11) obtained using
zero-gradient (Neumann) boundary conditions, whereasẼh

i andĒh
i have been obtained as

solutions of the auxiliary one-dimensional eigenvalue problem (see Eq. (12) of Ref. [24])
using zero-value (Dirichlet) boundary conditions. Also, matrix elementsVi j are calculated
using different approaches (compare Eq. (11) of Ref. [24] and Eq. (11) and the formula for
Vi j below Eq. (11) in the present work), which results in the different rate of convergence
of the corresponding angular expansions.

In Table VI we present our calculations of matrix elementsQ1h
i j (R = 7.65)andQ2h

i j (R =
7.65) obtained from formulas (8) and (14), respectively. The results of both calculations
are practically identical within the given accuracy. For comparison, we show in Table VI
matrix elementsQ̃2h

i j (R = 7.65) (the fifth column) obtained by formula (21) in [24] and also
Q̄2h

i j (R = 7.65) (the sixth column) calculated by the same method but using the extended
basis set described above. One can see very good agreement between all four calculations
presented in the table.

In Table VII we present our results for radial matrix elementsH1h
i j (R = 7.65) andH2h

i j

(R = 7.65) obtained within the present approach using formulas (8) and (15), respectively.
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TABLE VI

Matrix Elements of Radial Coupling Qij (R) Computed atR = 7.65 a.u.

i j Q 1h
i j Q2h

i j Q̃2h
i j Q̄2h

i j

1 2 0.586014(−01) 0.586014(−01) 0.585907(−01) 0.585893(−01)
1 3 −0.286341(−01) 0.286341(−01) 0.286413(−01) 0.286418(−01)
1 4 0.442209(−01) 0.442209(−01) 0.442198(−01) 0.442216(−01)
1 5 −0.336214(−01) −0.336214(−01) 0.336215(−01) 0.336233(−01)
1 6 0.161869(−01) 0.161869(−01) 0.162012(−01) 0.162002(−01)
2 3 0.250621(−01) 0.250621(−01) −0.250045(−01) −0.250077(−01)
2 4 0.165765(+00) 0.165765(+00) 0.165781(+00) 0.165782(+00)
2 5 −0.607837(−01) −0.607837(−01) 0.607890(−01) 0.607908(−01)
2 6 0.172490(−01) 0.172490(−01) 0.172592(−01) 0.172573(−01)
3 4 0.457925(−01) 0.457925(−01) −0.458364(−01) −0.458311(−01)
3 5 0.134640(+00) 0.134640(+00) 0.134615(+00) 0.134617(+00)
3 6 −0.896893(−01) −0.896893(−01) 0.897034(−01) 0.897034(−01)
4 5 −0.203183(+00) −0.203183(+00) 0.202920(+00) 0.202961(+00)
4 6 0.155380(−01) 0.155380(−01) 0.155163(−01) 0.155172(−01)
5 6 −0.113957(+00) −0.113957(+00) 0.113800(+00) 0.113799(+00)

Note. Q1h
i j , Q2h

i j , Q̃2h
i j , andQ̄2h

i j are defined in the text.

The results for theH2h
i j (R = 7.65) have been obtained using six terms in sum (15). One can

easily see a big difference between these two calculations. A similar discrepancy is observed
between theH1h

i j (R = 7.65) and theH̃2h
i j (R = 7.65) (the fifth column in Table VII) taken

from Ref. [24]. As expected, ourH2h
i j (R = 7.65) elements agree much better with the

TABLE VII

Matrix Elements of Radial Coupling Hij (R) Computed atR = 7.65 a.u.

i j H 1h
i j H 2h

i j H̃ 2h
i j H̄ 2h

i j

1 1 0.129180(−01) 0.760195(−02) 0.760548(−02) 0.128801(−01)
1 2 0.126385(−01) 0.893549(−02) 0.947869(−02) 0.126303(−01)
1 3 −0.729629(−02) −0.542228(−02) 0.648605(−02) 0.728683(−02)
1 4 0.376942(−02) −0.132001(−02) −0.129332(−02) 0.375300(−02)
1 5 −0.105365(−01) 0.145577(−01) −0.145408(−01) −0.105361(−01)
1 6 −0.599567(−02) −0.809748(−02) −0.825414(−02) −0.599308(−02)
2 2 0.387063(−01) 0.355324(−01) 0.372254(−01) 0.387056(−01)
2 3 −0.450057(−02) −0.381820(−02) 0.593952(−02) 0.449231(−02)
2 4 0.190126(−01) 0.140620(−01) 0.244742(−01) 0.189969(−01)
2 5 0.238220(−01) 0.263704(−01) −0.156242(−01) −0.238009(−01)
2 6 −0.538306(−02) −0.630598(−02) −0.799195(−02) −0.537534(−02)
3 3 0.326976(−01) 0.297171(−01) 0.731349(−01) 0.326953(−01)
3 4 −0.256900(−01) −0.258621(−01) 0.251212(−02) 0.256612(−01)
3 5 0.226722(−01) 0.189643(−01) −0.677882(−02) 0.226588(−01)
3 6 0.119753(−01) 0.146004(−01) −0.185494(−01) −0.119490(−01)
4 4 0.814621(−01) 0.730553(−01) −0.374142(+00) 0.813717(−01)
4 5 −0.966072(−02) −0.716772(−02) −0.307431(+00) 0.965263(−02)
4 6 −0.23124(−01) −0.236861(−01) 0.370903(+00) −0.230691(−01)
5 5 0.834146(−01) 0.772227(−01) 0.264643(+00) 0.832770(−01)
5 6 −0.194731(−01) −0.168255(−01) 0.402133(−01) 0.194682(−01)
6 6 0.273542(−01) 0.218313(−01) −0.499955(−02) 0.273217(−01)

Note. H1h
i j , H 2h

i j , H̃ 2h
i j , andH̄ 2h

i j are defined in the text.
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H̃2h
i j (R = 7.65) obtained with the same number of terms in formula (15). Such disagree-

ment between theH1h
i j and theH2h

i j andH̃2h
i j is because of the insufficient number of terms

(six only) taken into account in sum (15) for theH2h
i j andH̃2h

i j . In order to show that matrix
elementsH1h

i j are much more accurate than theH2h
i j andH̃2h

i j ones, we have calculated the
H̄2h

i j (see the sixth column in Table VII) using 80 terms in sum (15). Comparison of the third
and sixth columns in Table VII clearly indicates that thēH2h

i j computed with the extended
basis set parameters agree much better with theH1h

i j obtained by Eq. (8) than with theH2h
i j

and H̃2h
i j computed by Eq. (15). This confirms our conclusion about the higher accuracy

and efficiency of formulas (8) and the necessity to use a rather large number of terms in
Eq. (15) (and therefore excessive computational resources) to obtain comparable accuracy
of matrix elementsH2h

i j . In all our calculations presented below, matrix elementsQi j and
Hi j are calculated using formulas (8).

To study the convergence of potential curvesEi (R) and radial matrix elementsQi j (R)
andHi j (R), we have performed a set of computations of these quantities as functions of the
numerical scheme parameters, namely, the number of isoparametric Lagrange elementsNel,
their orderNpol, and the maximum number of termslmax in the angular basis set expansion
in l (see Eq. (9)). In the present work, the desired accuracy of the ground-state energy of He
and H− is set to 10−6 a.u. This requires the same accuracy of radial matrix elements. From
the results of numerical experiments, the following set of numerical parameters has been
chosen for the He1Se state:Nel = 210 (1471 grid points withh = 0.00053),Npol = 7,
and lmax= 11 (12 equations in Eq. (11)). The grid inR has been chosen as follows:
0.02(0.02)0.32(0.01)1(0.02)3(0.05)5(0.08)9(0.1)20(0.2)30(0.25)50 (number in parenthe-
ses denotes the step inR). A banded system of 17,652 linear algebraic equations (Eq. (12))
has been solved with relative error toleranceε = 10−10 at each value of hyperradiusRwith
the mean half bandwidthM = 54 (maximum 96). In Fig. 1 we show the He1Se poten-
tial curvesEi (R), i = 1, . . . ,28, correlating with then = 1–n = 7 hydrogen-like states of
He+ as a function of the hyperradiusR. Clearly seen are points of avoided crossings [2, 6]
where the radial nonadiabatic coupling terms are known [2, 6, 7] to peak. Such peaks are

FIG. 1. Potential curvesEi (R) (in a.u.) plotted vs hyperradiusR up to then = 7 threshold,En = −2/n2,
for the1Se state of He.
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FIG. 2. Radial matrix elementsHii (R) for the1Se state of He fori = 1, 2, 3, 4, 5, 8, and 28.

clearly seen from Fig. 2, where the diagonal matrix elementsHii , i = 1, 2, 3, 4, 5, 8, 28,
are presented. For instance, matrix elementsH22 and H33 and alsoH44 and H55 in Fig. 2
show pronounced maxima in the avoided crossing regions.

In Fig. 3 we plot radial coupling matrix elementsQi j (R) for some values ofi and j
as functions of hyperradiusR. As seen in the figure, the matrix elements displayed also
show maxima in the quasi-crossings points. Note that singular behavior of the radial matrix
elements near avoided crossings can be eliminated by passing into the diabatic representation
[25]. However, in this work we use the finite-element scheme which allows us to solve the
eigenvalue problem for system of radial eauations (6) within the adiabatic representation.

In Table VIII we compare potential curvesEi (R) calculated numerically with the asymp-
totic ones,Eas

i (R), computed analytically using the dipole approximation [26] for three

FIG. 3. Radial matrix elementsQi j (R) for the1Se state of He for several values ofi and j .
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TABLE VIII

Comparison of the Numerical Potential CurvesEi(R) with the Dipole

Asymptotics, Eas
i (R), for the 1Se State of He Calculated atR = 40, 60,

and 80 a.u. up to then = 3 Threshold

R = 40 a.u. R = 60 a.u. R = 80 a.u.
Curve

number,i −Ei (R) −Eas
i (R) −Ei (R) −Eas

i (R) −Ei (R) −Eas
i (R)

1 2.02516 2.02516 2.01674 2.01674 2.01254 2.01254
2 0.52627 0.52620 0.51722 0.51720 0.51281 0.51280
3 0.52413 0.52411 0.51628 0.51627 0.51228 0.51228
4 0.25103 0.25073 0.24052 0.24045 0.23563 0.23560
5 0.24735 0.24693 0.23888 0.23876 0.23470 0.23465
6 0.24437 0.24447 0.23765 0.23766 0.23403 0.23403

values ofR, 40, 60, and 80 a.u., up to then = 3 threshold. It is evident that these results
agree very well. For instance, the five significant digits are obtained for the ground-state
potential curve (i = 1). This confirms the high accuracy of our numerical procedure.

For negative hydrogen ion H− the following set of numerical scheme parameters has
been chosen:Nel = 220 (1541 grid points withh = 0.00051),Npol = 7, lmax= 11, andε =
10−10. The hyperradiusR-region has been divided as follows: 0.02(0.08)0.98(0.02)1(0.025)
3(0.05)5(0.075)7.1(0.1)20(0.2)30(0.25)50. The size of a banded system of linear algebraic
equations (Eq. (12)) was 18,492 with the mean half bandwidthM = 54 (maximum 99).
In Fig. 4 the H− 1Se potential curvesEi (R), i = 1, . . . ,28, up to then = 7 hydrogenic
threshold are shown as functions of hyperradiusR. From the figure, one can see many
quasi-crossing points, as well as several exact crossings.

As a useful check of the method, we have performed a number of bound-state calculations
for He and H−. Since our goal is to develop an efficient and stable algorithm for computing

FIG. 4. Potential curvesEi (R) (in a.u.) plotted vs hyperradiusR up to then = 7 threshold,En = −1/2n2,
for the1Se state of H−.
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radial matrix elements that can be used in both scattering and bound-state calculations, we
did not attempt to exceed the accuracy of the most accurateab initio methods by pushing
the bound-state calculation to complete convergence. Below we present the results of the
ground-state energy calculation for He and H−. The accuracy of the ground-state energies
obtained is analyzed and compared with the accuracy of approximations made during the
computation of the relevant matrix elements of radial coupling.

The system of coupled radial equations (6) has been solved, subject to boundary con-
ditions (7), by the finite-element method using schemes of high-order accuracy [19, 20].
Isoparametric Lagrange elements of the third order have been used, providing an accuracy
of order O(h6

R) with respect to eigenvalues and of O(h6
R) order with respect to eigen-

functions. HerehR is the maximum mesh step of the finite-element grid on the interval
[0,Rmax]. As a result of numerical experiments, the following values of numerical scheme
parameters have been chosen: (i)Rmax= 40 a.u. andNel = 1500 (4501 grid points with
stephR = 0.0089) for the He atom; and (ii)Rmax= 30 a.u. andNel = 1200 (3601 grid
points withhR = 0.0082) for the H− ion. The size of a banded system of linear algebraic
equations (Eq. (12)) that approximated a system of 28 radial equations was 125,972 with
M = 70 (maximum 112) for the He and 100,772 withM = 70 (maximum 112) for the H−,
respectively. Error tolerance has been set to 10−12 a.u.

A study of the convergence of the ground-state energy of He and H− with the number
of radial equations is presented in Table IX. One can see that the energy eigenvalues con-
verge monotonically from above, with the 28-channel value beingEHe = −2.90372266 a.u.
and EH− = −0.52774970 a.u. As shown in Table X, these values are close to the pre-
cision variational results:EVAR

He = −2.9037243770341195938 a.u. [29] andEVAR
H− =

−0.527751016544306 a.u. [30]. Since the calculation accuracy for eigenvalues equals
O(h6

R) and the basis step of the grid amounts to≈0.009, our results have errors in the 12th
digit. However, as follows from Table X, our energy values lie above the variational energies
by approximately 10−6 a.u. This is consistent with the accuracy of the radial matrix elements
and the approximations used. Comparisons with some other calculations are also given in
Table X. It is evident that our results are more accurate than the 17-channel hyperspherical ar-
tificial channel method [23] and the hyperspherical close-coupling method [27, 28]. Both of
these methods use the sector-diabatic representation, in which adiabatic basis expansion has
a slower convergence than in the adiabatic representation used in the present work. We also

TABLE IX

Convergence of the Ground-State Energy (in

a.u.) for He and H− with the Number of Coupled

Channelsn

n He H−

1 −2.88791168 −0.52241442
2 −2.89137991 −0.52472087
3 −2.90287002 −0.52732522
6 −2.90300448 −0.52751473

10 −2.90363613 −0.52768020
15 −2.90370549 −0.52773607
21 −2.90372264 −0.52774928
28 −2.90372266 −0.52774970
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TABLE X

Comparison of the Present Ground-State Engergy (in a.u.)

of He and H− with Other Theoretical Calculations

Method He H−

HACCa −2.903723 −0.527750
ACMb −2.903611 −0.527642
HSCCc −2.903594 −0.52773
VARd −2.903724 −0.527751
MCHFe −2.902909 −0.527542
CI f −2.903724 −0.527542
RMMg −2.8961 −0.52403
CCMh −2.8934 −0.52775

a Present 28-channel hyperspherical adiabatic coupled-channel cal-
culation.

b 17-channel hyperspherical artificial channel method calculation
[23].

c Hyperspherical close-coupling calculation: 28-channel computation
for H− [27] and 21-channel calculation for He [28].

d Variational method calculation: using uncoupled correlated basis
of 8066 one-dimensional functions for He [29] and 616 Hylleraas-type
functions for H− [30].

e Multiconfigurational Hartree–Fock calculation: using 32 configura-
tions for H− [31] and 10 configurations for He [32].

f Configuration interaction method calculation: using 130 configura-
tions for H− [33] and 125 modified configurations for He [34].

g R-matrix method calculation: using 158 configurations for H− [35]
and 79 configurations for He [36].

h Close-coupling method calculation with pseudostates and correla-
tion terms: nine Hylleraas-type functions for H− [37] and seven corre-
lation functions for He [38].

compare our calculations with the results of the multiconfigurational Hartree–Fock method
[31, 32], the configuration interaction method [33, 34], the R-matrix method [35, 36], and the
close-coupling method [37, 38]. All these methods use a large number of electronic configu-
rations, as seen in Table X. Analysis of the table shows excellent agreement with the results
of the most accurateab initio methods widely used in atomic and molecular calculations.

8. CONCLUSIONS

In the present work, the quantum mechanical three-body problem with Coulomb interac-
tion has been formulated within the adiabatic representation method using hyperspherical
coordinates. The reduction of the three-dimensional problem to a one-dimensional one
has been performed using the Kantorovich method. A new method for computing variable
coefficients (potential matrix elements of radial coupling) of a final system of ordinary
second-order differential equations has been proposed. In this method, a new boundary
parametric problem with respect to unknown derivatives of eigensolutions in the adiabatic
variable (hyperradius) has been formulated. An efficient, fast, and stable algorithm for
solving the boundary problem with the same accuracy for the adiabatic eigenfunctions and
their derivatives has been suggested. As a result, matrix elements of radial coupling can be
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calculated with the same precision as the adiabatic functions obtained as solutions of an
auxiliary parametric eigenvalue problem.

The method developed has been thoroughly tested on a parametric eigenvalue problem
for a hydrogen atom on a three-dimensional sphere. This problem has an analytical solution,
which allows direct comparison of our results with the exact solutions. Excellent agreement
between the analytical and numerical results has been obtained. The accuracy, efficiency,
and robustness of the algorithm have been studied for this problem in details. The method
has been further applied to the computation of the ground-state energy of the helium atom
and the negative hydrogen ion. The results obtained show excellent agreement with the
results of calculations by other methods.

This study constitutes a major improvement over the standard techniques for the calcu-
lation of potential matrix elements of radial coupling within the adiabatic representation
method. It guarantees high accuracy of computation of radial matrix elements, compara-
ble to the accuracy that can be achieved for the adiabatic eigensolutions of the auxiliary
parametric eigenproblem. The method can be used not only for bound-state problems but
also for solving, within the hyperspherical close-coupling approach, various scattering and
photoionization problems arising in two-electron atomic systems. The approach proposed
can easily be extended to systems with arbitrary (finite) masses of particles and total angular
momentumJ> 0, for any appropriate system of coordinates. The method can be also used
for atom–diatom reactive scattering and photodissociation. Work on spectral characteristics
and properties of exotic atoms within the present approach is currently under way [39].
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